Solve

$$25^{3x+1} = 125^{x-3}$$

$$(5^{2})^{3x+1} = (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= (5^{-3})$$

$$= ($$

$$x^{a} = x^{b} + he$$
  $q = b$ 

$$(x^{a})^{b} = x^{a}$$

$$(x^{a})^{b} = x^{a}$$

**a.** 
$$3^x = \frac{1}{9}$$

**b.** 
$$\left(\frac{5}{3}\right)^x = \frac{27}{125}$$

Exponential, Power, and Logarithmic Functions

**b.** 
$$\left(\frac{5}{3}\right)^x = \frac{27}{125}$$
 **c.**  $\left(\frac{1}{3}\right)^x = 243$ 

**d.** 
$$5 \cdot 3^x = 5$$

5. Solve each equation for positive values of x. If answers are not exact, approximate to two decimal places.

**b.** 
$$x^{0.5} = 28$$

c. 
$$x^{-3} = 247$$

**d.** 
$$5x^{1/4} + 6 = 10.2$$
 **h**

**e.** 
$$3x^{-2} = 2x^4$$

f. 
$$-3x^{1/2} + (4x)^{1/2} = -1$$



262 CHAPTER 5

y"=400

1:41 PM 12/6/2016

$$\frac{3x^{-2}}{x^{1}} = \frac{2x^{4}}{x^{2}}$$

$$3 = 2x^{4-2} = 2x^{6}$$

$$\frac{3}{2} + \frac{2x^{6}}{x^{2}}$$

$$\frac{3}{2} + \frac{2x^{6}}{x^{6}}$$

$$\frac{3}{2} + \frac{2x^{6}}{x^{6}}$$

$$-3x^{2} + 2x^{2}$$
 $-1x^{2}$ 

Exponential Y=variabl Variable 13 in expositions but no one constants

Power family y= X variable is the base even wind (Oh)

Solve

$$\frac{25}{3x+7} = 125 \times -4$$

$$(5^{2})^{3x+7} = (5^{3})$$

$$5^{2}(3x+1) = 5 \times -4$$

$$5 \times +14 = 3x - 12$$

$$-3x - 14 - 3x - 14$$

$$\frac{3x}{3} = -26$$

$$5^{2} = 25$$

$$5^{2} = 125$$

$$x^{0} = x^{0} \Rightarrow a = b$$

$$(a^{x})^{0} = a^{x \cdot y}$$

$$x^{2} = -8^{2} \cdot 3 = -8 \cdot 5$$

$$25^{3} = -8 \cdot 5 \cdot 7 = 25$$

. .

- c. Look for a connection between your answers to 11a and b and the values in the table. State a conjecture or write a general equation that summarizes your findings.
- 12. A ball rebounds to a height of 30.0 cm on the third bounce and to a height of 5.2 cm on the sixth bounce.
  - **a.** Write two different yet equivalent equations in point-ratio form,  $y = y_1 \cdot b^{x-x_1}$ , using r for the ratio. Let x represent the bounce number, and let y represent the rebound height in centimeters.
  - b. Set the two equations equal to each other. Solve for r. @
  - c. What height was the ball dropped from? (6)
- Solve.

**a.** 
$$(x-3)^3=64$$

**b.** 
$$256^x = \frac{1}{16}$$

c. 
$$\frac{(x+5)^3}{(x+5)} = x^2 + 25$$

264 CHAPTER 5 Exponential, Power, and Logarithmic Functions

$$((x-3)^{3})|_{3} = (64)^{1/3}$$

$$(x-3)^{3}|_{3} = (64)^{1/3}$$

$$(x-3)^{3}|_{3} = (64)^{1/3}$$

$$(x-3)^{3}|_{3} = (4000)^{1/3}$$

$$(x-3)^{3}|_{3} = (4000)^{1/3}$$

$$(x-3)^{3}|_{3} = (4000)^{1/3}$$

$$(x-3)^{3/3}|_{3} = (4000)^{1/3}$$

Power Function Variable (x) is the bace even power (0,0)

exponential function Variable (x) is the exponent base >1 0 < base <1 (p.1)